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1 Use the trapezium rule with three intervals to estimate the value of

Ó 1
20

0
ln�1+ sinx�dx,

giving your answer correct to 2 decimal places. [3]

2 Using the substitutionu = 4x, solve the equation 4x + 42 = 4x+2, giving your answer correct to
3 significant figures. [4]

3 A curve has equationy = cosx cos 2x. Find thex-coordinate of the stationary point on the curve in
the interval 0< x < 1

20, giving your answer correct to 3 significant figures. [6]

4 (i) Express 3 sin1 + 2 cos1 in the formR sin�1 + !�, whereR > 0 and 0Å < ! < 90Å, stating the exact
value ofR and giving the value of! correct to 2 decimal places. [3]

(ii) Hence solve the equation

3 sin1 + 2 cos1 = 1,

for 0Å < 1 < 180Å. [3]

5

2x rad

A

T

B

O
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The diagram shows a circle with centreO and radiusr. The tangents to the circle at the pointsA and
B meet atT, and the angleAOB is 2x radians. The shaded region is bounded by the tangentsAT and
BT, and by the minor arcAB. The perimeter of the shaded region is equal to the circumference of the
circle.

(i) Show thatx satisfies the equation

tanx = 0 − x. �3�

(ii) This equation has one root in the interval 0< x < 1
20. Verify by calculation that this root lies

between 1 and 1.3. [2]

(iii) Use the iterative formula

xn+1 = tan−1�0 − xn�

to determine the root correct to 2 decimal places. Give the result of each iteration to 4 decimal
places. [3]
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6 Let I = Ô 1

0

�
x

2− �
x

dx.

(i) Using the substitutionu = 2− �
x, show thatI = Ô 2

1

2�2− u�2

u
du. [4]

(ii) Hence show thatI = 8 ln 2− 5. [4]

7 The complex numberu is given byu = −1+ �4ï3�i.

(i) Without using a calculator and showing all your working, findthe two square roots ofu. Give
your answers in the forma + ib, where the real numbersa andb are exact. [5]

(ii) On an Argand diagram, sketch the locus of points representing complex numbersÏ satisfying
the relation�Ï − u � = 1. Determine the greatest value of argÏ for points on this locus. [4]

8 Let f�x� = 5x2 + x + 6

�3− 2x��x2 + 4�
.

(i) Express f�x� in partial fractions. [5]

(ii) Hence obtain the expansion of f�x� in ascending powers ofx, up to and including the term inx2.
[5]

9 The number of organisms in a population at timet is denoted byx. Treatingx as a continuous variable,
the differential equation satisfied byx andt is

dx
dt

= xe−t

k + e−t ,

wherek is a positive constant.

(i) Given thatx = 10 whent = 0, solve the differential equation, obtaining a relation betweenx, k
andt. [6]

(ii) Given also thatx = 20 whent = 1, show thatk = 1− 2
e

. [2]

(iii) Show that the number of organisms never reaches 48, however larget becomes. [2]

10 The pointsA andB have position vectors given by
−−→
OA = 2i − j + 3k and

−−→
OB = i + j + 5k. The linel

has equationr = i + j + 2k + -�3i + j − k�.

(i) Show thatl does not intersect the line passing throughA andB. [5]

(ii) Find the equation of the plane containing the linel and the pointA. Give your answer in the
form ax + by + cÏ = d. [6]
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